
COMS 4020 – Demo 3 Presentation

Team 7 – Robotic Chess Player

COMS4020 – Team 7
Client: Dr. Bowen Weng
College: LAS College (Computer Science Department)

Final Demo

Abhay Prasanna Rao, Umesh Sai Teja Poola, Neha Tirunagiri , Logan Becker

3

Previous Demos Recap

4

• Build an autonomous robotic chess system that plays with real pieces.

• Integrate computer vision, chess AI, and robotic manipulation to remove

the human operator.

• Enable a robot to perceive the board, compute moves, and execute

them independently.

Project Goal

Why it Matters?

• Advances autonomous robotics and human - robot interaction.

• Demonstrates integration of vision, AI, and manipulation.

• Enables real-world deployment of chess AI without human intervention.

5

On a High Level, Here’s what we are trying to accomplish:

1. Using a gripper hand attached to Robotic Arm (UR10e) to

physically move the chess pieces during the gameplay

2. Using camera for Board Detection and Piece Recognition

3. Using Stockfish (Chess Engine) for moves calculation

4. Using Mujoco to simulate the robotic arm movements

5. Using ROS (Robotic Operation System) to bridge perception

and action

Solution

6

Software:

1. Stockfish (Chess Engine)

2. Yolo & OpenCV (Image recognition)

3. Yolo V8 nano (Piece recognition)

4. ROS (Robotic Operating System)

5. Mujoco

6. Python

7. Ubuntu OS+ Catkin Workspace

Hardware:

1. UR10e Robotic Arm

2. Hand Gripper

3. Logitech Webcam

4. Chess Board & Pieces

Hardware & Software

7

UR10e Robot Hardware

Universal Robot’s UR10e

- 6 degrees of Freedom:

- shoulder_pan_joint (base

joint)

- shoulder_lift_joint

- elbow_joint

- wrist_1_joint

- wrist_2_joint

- wrist_3_joint

8

Gripper Hardware

Robotiq Hand-E Adaptive Gripper:

- Dual adaptive fingers (2-inch span): conforms to
varied part shapes

- Position-controlled interface: command
open/close and read joint state for feedback

- Position-based grasp check: infer success from
achieved position

9

Board Vision Pipeline

Camera → Corner Detection → Homography → Bird's Eye View → Grid Mapping → YOLO Piece Recognition → FEN Generation

 1fps 7 Methods Validation 800×800px 64 Squares

10

11

12

Piece Recognition – Training and Stuff

•Our system is designed with multiple fallback detection methods to ensure robustness under real-

world conditions.

•We begin with YOLO-based object detection to identify chess pieces and board regions efficiently.

•In parallel, contour detection is used to validate piece boundaries and handle cases where confidence

scores fluctuate.

•To improve structural accuracy, we apply gradient-based edge detection followed by Hough

transforms to detect board lines reliably.

•For precise board geometry, OpenCV chessboard corner detection is used to localize square corners

accurately.

•This layered and redundant vision pipeline allows the system to remain stable despite lighting

changes, partial occlusions, or camera angle variations.

13

Live Detection With Pieces on the Board (Corner)

14

Live Detection With Pieces on the Board (BirdsEye + Square Mapping)

15

Live Detection With Pieces on the Board (Diagonal Mapping)

16

Live Detection With Pieces on the Board (YOLO Piece Recognition)

17

Homographic Transformation

What is a Homography?

 - A 3×3 perspective matrix that maps points from

the camera image to a top-down (bird’s-eye)

chessboard view.

 - Used to remove perspective distortion and align

the board to an 8×8 grid.

Core Operations

- Compute H: cv2.getPerspectiveTransform(src_corners, dst_corners)

- Warp Image: cv2.warpPerspective(image, H, (800, 800))

- Transform Points: cv2.perspectiveTransform(points, H)

- Inverse Mapping: cv2.perspectiveTransform(points, H_inv)

Why We Need It

- Converts raw camera detections into consistent board coordinates.

- Enables stable chess square mapping even if the camera angle changes.

- Allows YOLO piece positions to be mapped directly to FEN board squares.

18

FEN Generation Pipeline

19

FEN Generation + Stockfish Input

• Get game state part of fen from web socket server (castling rights, fullmove and

halfmove counter)

• Web socket combines piece placement fen with game logic fen

• Chess Manager queries the web socket for the current fen

• Stockfish finds the best move for the given fen

20

Chess Engine Setup & Best Move Prediction

21

Fall Back Approach - Blind Chess Game Logic

• The Blind Chess system lets users play chess

without manually entering moves.

• It detects piece movements through YOLO-based

computer vision and synchronizes with Stockfish

for live gameplay.

• The system compares the detected board with the

previous state to infer the player’s move, then

updates the board for Stockfish’s response.

Camera → YOLO → FEN → Reconciliation →

Stockfish → Updated Board

22

Web Integration for Game Controls

• Interactive Web Interface

• Users make moves directly on the digital chessboard via the web interface.

• Move Execution

• When a user makes a move, the UR10e robot arm executes the corresponding pick-and-place

sequence through the robot movement logic.

• Live Video Display

• A real-time camera feed is displayed in the web interface to show the actual board state during

gameplay, complementing simulation views.

• AI Response

• The Stockfish engine calculates the robot’s move, updates the board state, and triggers the

robotic arm to move the piece.

• Webapp Integration

• Full system integration is complete: Vision + Stockfish + Webapp + ROS.

23

Web Interface Screenshot

Placehold

er, will re-

update it

in the Lab

tomorrow

at 3pm

24

System Architecture

25

26

Building a Robot Command

System Architecture Overview

Kinematics Solver

Forward Kinematics (FK)

In: Robot state (θ₁, θ₂...θ₆)

Out: Gripper position (x, y, z)

Direct calculation using DH parameters

⇅

Inverse Kinematics (IK)

In: Target position (x, y, z)

Out: Robot state (θ₁, θ₂...θ₆)

Solved via Levenberg-Marquardt

→

GameManager
desired action

↓

Controller

In: Chess action (move, capture, etc.)

Out: Sequence of waypoints

Translates high-level commands to poses

↓

Waypoint Table

Maps board positions to joint angles

Pre-calibrated lookup for speed

robot joint trajectories

↓

ROS Goals

27

Forward Kinematics

Computing End-Effector Position from Joint Angles

Key Concept: Treat each physical part of the robot as a transformation

• Links are positional offsets

• Joints are rotations

Mathematical Framework:

• Transformations belong to Special Euclidean group SE(3) of rigid motions

• Net effect: brings origin to end position

Overall transformation = product of individual matrices

Transformation Chain:

base → joint 1 → link 2 → joint 3 → link 4 → gripper

↓

origin

(0, 0, 0)
→

rotate by

angle θ₁
→

offset by

length x₂
→

rotate by

angle θ₃
→

offset by

length x₄
→

end

position

↓ ↓ ↓

28

Inverse Kinematics

Problem: Given a target 3D position, find the joint angles such that the gripper ends up at the target.

Key Challenges: Nonlinear problem due to rotational (revolute) joints

Optimization Approach: use a nonlinear optimizer from libraries (e.g. scipy)

Minimize cost function: the squared error from target p̄ j(q̄) = ½ ||FK(q̄) − p̄||²
 j(q̄) = ½ ||FK(q̄) − p̄||²

Where q is a tuple of 6 angles, in parameter space Θ ⊆ T⁶ with constraints and known bounds to prevent unsafe configurations:

 IK(q̄) = arg min j(q̄)

Levenberg-Marquardt Method: Combines Gauss-Newton and gradient descent

` x = x + (JJ + λI) Jr(x)

J = Jacobian, r(x) = residual vector, λ = damping factor

29

Waypoints and Calibration

- This is the next stage where we need to set some pre-calibrated waypoints to use for the robot’s initial placements
- This will map physical positions to robot states
- We will set Home to be our start/end states
- Table position for captured pieces
- 2 waypoints for each square:

- Square Hover: Directly above
- Square Drop: drop/pick the piece at it’s square

Totally we will have about 64x2 board and 2 custom waypoints

30

Subscribers and Publishers

31

Subscribers

(What our system listens to)

/joint_states

Receives real-time robot arm joint feedback for trajectory synchronization.

/chess_robot/vision_detection

Subscribes to YOLO-based vision detection outputs to interpret chess piece locations.

/chess_robot/detected_move

Subscribes to detected or user-triggered chess moves (UCI format).

Trajectory Execution Feedback

Monitors robot trajectory execution status via ROS Action feedback

(MoveIt-free system)

32

Publishers

(What our system sends out)

Robot Trajectory Actions

Sends joint trajectories via FollowJointTrajectoryAction to execute pick-and-place motions.

Gripper Commands

Sends open/close commands via ROS Services (/gripper/open, /gripper/close) (currently tested manually due to gripper

malfunction)

/chess_robot/game_state

Publishes the detected chessboard configuration and full game state per frame.

/chess_robot/move_completed

Notifies when a move is completed or when fallback logic is required.

33

System Setup

34

UR Robot Startup & Safety Initialization

35

Enabling Remote Control Mode

• This setting allows external software (ROS + URCap

ExternalControl) to send commands to the robot.

• Enable “Remote Control Mode” to allow program

execution from the ROS pipeline.

36

Network Configuration for ROS Communication

•Set the UR controller to Static Address mode.

•Assign IP address (example shown: 192.168.56.100) that matches the

ROS machine’s subnet.

•Ensure correct subnet mask (e.g., 255.255.255.0).

•Apply settings and confirm the robot is “Connected” to the network.

•ROS PC and UR robot must be on the same network to enable External

Control.

37

External Control URCap Setup

•Under Program → URCaps → External Control, select Control by

ExternalControl.

•This enables MoveIt to stream trajectories through the external_control

node.

•Confirms host IP (ROS PC) and Ethernet port for communication.

•Required for autonomous execution of chess pick-and-place motions.

38

Robot Tool I/O & Gripper Interface

•Configure the tool communication interface (e.g., RS485, voltage

settings).

•Set appropriate digital output mode for gripper actuation.

•Tool output voltage must match the attached hardware to avoid

damage.

•Even though our gripper malfunctioned, this configuration is required

for future testing.

•Ensures consistent tool-state reporting for robotics pipeline.

39

Challenges

40

Demo 3 Individual Contributions

Abhay

End-to-end vision-robot-webapp integration with IK support, waypoint management, WebSocket bridge,

enhanced web interface, critical bug fixes, and SD07 website updates and Created the Hand-Off Document

Umesh

.

Neha

For Demo 3, I Refactored vision subsystem into standalone module by resolving cross-module dependencies

and enabling autonomous operation without ROS or robot control

Logan

Ensured waypoints for pick and place are accurate for every type of chess piece on every square and Edited

and Uploaded Short DEMO video in the website

41

Abhay Prasanna Rao
Computer Science, DS & AI

About Us

Umesh Sai Teja Poola
Computer Science, DS & AI

upoola@iastate.edu

Umeshsaitejapoola.com

Neha Tirunagiri
Computer Science, DS & AI

neha2004@iastate.edu

nehatirunagiri.com

abhay14@iastate.edu

Abhayprasannarao.com

Logan Becker
CS, DS, Statistics

lbecker2@iastate.edu

42

Live Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

